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The multiplier ring

Let A be a non-necessarily unital k-algebra. The multiplier ring
M(A) of A is defined as the set

M(A) = {(R, L) ∈ End(AA)×End(AA) : (aR)b = a(Lb)∀a, b ∈ A}

with the following operations:

(i) (R, L) + (R ′, L′) = (R + R ′, L + L′);

(ii) (R, L) ◦ (R ′, L′) = (R ′ ◦ R, L ◦ L′).

We use the usual notations for R : AA −→ AA and L : AA −→ AA,
respectively. That is, for w = (R, L) ∈M(A) and a ∈ A we set
aw = aR and wa = La.
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Partial Actions

Definition Let G be a group and A a unital k-algebra, k a

commutative ring. A partial action α of G on A is a collection

of ideals Sg , g ∈ G , of R and isomorphisms of k-algebras

αg : Sg−1 −→ Sg such that:

(i) S1 = R and α1 is the identity mapping on R.

(ii) S(gh)−1 ⊇ α−1h (Sh ∩ Sg−1).

(iii) αg ◦ αh(x) = α(gh)(x), for any x ∈ α−1h (Sh ∩ Sg−1).

More generally we have
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Twisted Partial Actions

Definition A twisted partial action α of G on A is a collection
of ideals Sg , g ∈ G , of A,

isomorphisms αg : Sg−1 −→ Sg , and a family {wg ,h}(g ,h)∈G×G ,

where, for each (g , h) ∈ G × G , wg ,h is an invertible element from

M(SgSgh) satisfying the following properties, for all g , h, t ∈ G :
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(i) S2
g = Sg , SgSh = ShSg ;

(ii) S1 = A and α1 is the identity mapping of A;

(iii) αg (Sg−1Sh) = SgSgh;

(iv) αg ◦ αh(a) = wg ,hαgh(a)w−1gh,t , for every a ∈ Sh−1Sh−1g−1 ;

(v) wg ,1 = w1,g = id ;

(vi) αg (awh,t)wg ,ht = αg (a)wg ,hwgh,t , for every a ∈ Sg−1ShSht .

Note that α is a twisted global action if Sg = A, for all g ∈ G .
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Example Given a twisted global action

β = (B, {βg}g∈G , {ug ,h}(g ,h)∈G×G )

of G on a non-necessarily unital ring B,

One can restrict β to a two-sided ideal A of B which has an

identity 1A as follows:

Put Sg = A ∩ β(A) = A.β(A). Then Sg is a two-sided ideal of A

which has an identity 1g = 1Aβg (1A).

Also define αg = β|Sg−1 and wg ,h = ug ,h1Aβg (1Aβg−1h(1A)).

Then it is easy to see that this gives a twisted partial action of G

on A.
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Definition of Enveloping action

A twisted global action β = (B, {βg}g∈G , {ug ,h}(g ,h)∈G×G )

of G on B is said to be a globalization (or an enveloping action)

for the partial action α of G on A if there exists a monomorphism

ψ : A −→ B such that:

(i) ψ(A) is an ideal of B;

(ii) B =
∑

g∈G βg (ψ(A));

(iii) ψ(Sg ) = ψ(A) ∩ βg (ψ(A)), for any g ∈ G ;

(iv) ψ ◦ αg = βg ◦ ψ on Sg−1 , for any g ∈ G ;

(v) ψ(awg ,h) = ψ(a)ug ,h, ψ(wg ,ha) = ug ,hψ(a), for any g , h ∈ G ,

a ∈ SgSgh.
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We say that β is a weak enveloping action of α if the items (i),

(iv) and (v) of the above definition are satisfied.

The following result was proved by M. Dokuchaev, R. Exel and J. J.

Simon.

Theorem Let A be a unital ring which is a (not necessarily finite)

product of indecomposable rings. A twisted partial action α of G

on A has a globalization if and only if each ideal Sg , g ∈ G , is a

unital ring.

Note that when α is a partial action, then the assumption that A

is a product of indecomposable rings is not necessary.
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Partial crossed product

Let α be a twisted partial action of G on R. The twisted partial

crossed product

A ?α G is defined as the direct sum ⊕g∈GSgδg ,

in which the δ′g s are symbols and the multiplication is defined by

the rule:

(agδg ).(bhδh) = αg (α−1G (ag )bh)wg ,hδg ,h.

Here wg ,h acts as right multiplier on αg (α−1g (ag )bh) ∈ SgSgh.

The associativity of the twisted partial crossed product was proved

by the same authors mentioned above.
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Semiprime Rings

We know that a semiprime ring is a ring which does not have

nilpotent ideals.

Assume that A is a semiprime ring. Given an ideal I of A, the

closure [I ] of I in A is defined as:

[I ] = {x ∈ A : xH ⊆ I , for an essential idealH of A}

We have that [I ] is also an ideal and I ⊆ [I ]. The ideal I is said to

be closed if [I ] = I .
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Rings of quotients

It is well-known that for any semiprime ring A there exists a

Martindale left ring of quotients Q and a maximal left ring of

quotients Qm of A. Both rings of quotients are also semiprime and

we have A ⊆ Q ⊆ Qm.

Assume that A is semiprime and Q is the Martindale (left) ring of

quotients of A. If I is an ideal of A, the closure of I in Q is defined

as:
I ∗ = {q ∈ Q : qH ⊆ I , for an essential idealH of A}
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Then I ∗ is a closed ideal of the semiprime ring Q and there

exists a central idempotent e ∈ Q such that I ∗ = Qe.

Theorem. There exists a one-to-one correspondence between the

closed ideals of A and the closed ideals of Q. This correspondence

associates the closed ideal I of A with the closed ideal L of Q

if L ∩ A = I . In this case L = I ∗ is generated by a central

idempotent of Q.

The same result holds for the relations between closed ideals of A

and closed ideals of Qm.
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Extensions of Twisted Partial Actions on Semiprime Rings

Hereafter we assume that A is a semiprime ring, Q is the

Martindale left ring of quotients of A and Qm is the maximal left

ring of quotients of A. Also

α = ({Sg}g∈G , {αg}g∈G , {wg ,h}(g ,h)∈G×G )

is a twisted partial action of G on A.

We proved that the twisted partial action α can be extended to Q.

We have the following:
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Theorem. For the given α there exists a twisted partial action

α∗ = ({S∗g}g∈G , {α∗g}g∈G , {w∗g ,h}(g ,h)∈G×G )

of G on Q such that α∗g |Sg−1 = αg and w∗g ,h|SgSgh = wg ,h,

for all g , h ∈ G .

It was more difficult to find a way to prove similar result for

extending partial actions to Qm. But using the fact that all the

ideals S∗g are generated by central idempotents finally we find a way

to prove that this is also true. We have:
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Theorem Let α = ({Sg}g∈G , {αg}g∈G , {wg ,h}(g ,h)∈G×G ) be a

twisted partial action of G on a semiprime ring A. Then there

exists a twisted partial action

α∗∗ = ({S∗∗g }g∈G , {α∗∗g }g∈G , {w∗∗g ,h}(g ,h)∈G×G )

of G on Qm such that α∗∗g |Sg−1 = αg and w∗∗g ,h|SgSgh = wg ,h,

for all g , h ∈ G .

This additional extension to Qm was essential for our purposes. In

particular for applying the results to study partial crossed products

on semiprime Goldie rings
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Let α be a partial action (without twisting) of G on a semiprime

rings A we can consider the extension α∗ of α to Q. Since all

the ideals S∗g are generated by central idempotents then there exists

an enveloping action (B, β) of α∗. Thus we have:

(A, α) ↪→ (Q, α∗) ↪→ (B, β).

Hence there exists a global action (B, β) extending α. This is what

we called a weak enveloping action of α.

Corollary Any partial action on a semiprime ring has a weak

enveloping action.
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Under some finiteness conditions the same result holds for twisted

partial actions. In particular, this holds when A is a Goldie ring.
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